Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(37): 44456-44468, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37635296

RESUMO

A composite of polypyrrole/metal nanoparticles (PPy/MNPs) was selectively incorporated into the pores of a honeycomb-patterned porous polycaprolactone polymer film to fabricate a novel capturer-catalyst microreactor system. This fabrication involved a modified breath figure method, where the polymer solution containing metal ions as an oxidizing agent was cast under humid conditions along with the pyrrole monomer through an interfacial reaction in a one-step in situ process. The higher hydrophilicity of the metal ions compared to the polymer solution led to their self-assembly around the pore surface, resulting in the selective incorporation of the PPy/MNP composite into the porous film. Copper (Cu), silver (Ag), and gold (Au) were used for the PPy/MNP fabrication. Various methods characterized the fabricated film. Strong catalytic degradations of methylene blue and methyl orange were obtained with PCL-PPy/MNPs. Recycling experiments showed no loss of activity even after five cycles of recycling. Comparative analysis of PCL-PPy, PCL-MNP, and PCL-PPy/MNP results indicated the synergistic action of PPy and MNPs in dye degradation. High-performance liquid chromatography and mass spectroscopy analyses confirmed dye degradation after treatment with a fabricated microreactor. PPy might have acted as a capturer of the dye molecule and MNPs as a catalyst, thereby enhancing the efficiency of dye degradation. Additionally, the PCL-PPy/Cu composite exhibited strong antimicrobial properties against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) with no cytotoxicity as measured by the MTT assay. Therefore, the fabricated microreactor film has promising applications in various fields.

2.
Toxics ; 10(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35622614

RESUMO

Chemical accidents in rivers may be triggered by natural or anthropogenic causes and refer to the flow of large quantities of hazardous chemicals into rivers. In South Korea, domestic water is sourced from large rivers, such as the Nakdong River. However, owing to rapid industrialization, industrial facilities have become heavily concentrated in the middle and upper reaches of the Nakdong River. Therefore, severe problems could arise if harmful chemicals are leaked from industrial facilities into the river, and this contaminated river water is supplied to cities. Quantitative evaluation based on instrumental analysis during chemical accidents and prediction research based on modeling is actively being conducted however, research on the initial response is insufficient. Therefore, in this study, the variations in pH and EC were analyzed according to their chemical concentrations for seven chemicals. These seven chemicals are designated accident-preparedness substances that frequently cause chemical spills in South Korea. Additionally, we evaluated the possibility of identifying unknown substances by comparing the variations in pH and EC and statistics while diluting unknown substances. Thus, the potential of pH and EC as alternative indicators for detecting and identifying chemicals was evaluated in this study. NaF, NH4HF2, NaCN, and NH4OH were classified by comparing their spatial distributions in a pH-EC relation curve. However, H2SO4, HCl, and SOCl2 showed similar spatial distributions in the pH-EC curves and were difficult to identify. The results of this study provide information for chemical detection and identification using alternative sensors that permit easy and rapid field measurements in the event of a chemical spill and could be used as preliminary data for rapidly responding to accidents.

3.
Nanomaterials (Basel) ; 12(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407202

RESUMO

We have fabricated poly(ε-caprolactone) (PCL) films with flat and honeycomb-patterned (HCP) structures to coat polyaniline (PANI) on the film surface. In addition, the effect of chemical modification of PANI by sulfuric acid (H2SO4) was also studied for antibacterial activity. The flat and HCP PCL films were obtained by simple evaporation of the solvent and via the breath figure (BF) method, respectively. The morphology and chemical composition of PANI coated on the film surface were evaluated by scanning electron microscopy (SEM) and X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analyses (TGA) were obtained to identify the PANI coating. The wettability and conductivity of the films were also measured. Applicational aspects were evaluated by assessing antibacterial and antibiofilm activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The EDX, TGA, and FT-IR findings indicated chemical modification of PCL film by PANI and H2SO4. The conductivity of the films was increased by the coating of PANI to the patterned surface and additionally increased by the chemically modified PANI. The antibacterial activity was 69.79%, 78.27%, and 88% against E. coli, and 32.73%, 62.65%, and 87.97% against S. aureus, for flat PANI, HCP PANI, and H2SO4-treated HCP films, respectively. Likewise, the PANI coated flat, HCP, and H2SO4-treated HCP films inhibited E. coli biofilm formation by around 41.62%, 63%, and 83.88% and S. aureus biofilm formation by 17.81%, 69.83%, and 96.57%, respectively. The antibacterial activity of the HCP film was higher than that of flat PANI films, probably due to the higher coating of PANI on the HCP surface. Moreover, sulfonation of the HCP film with H2SO4 might have improved the wettability, thereby enhancing the antibacterial and antibiofilm properties. Our results showed that topographical changes, as well as doping, offer simple and cost-effective ways to modify the structural and functional properties of films.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25709498

RESUMO

Herceptin, the monoclonal antibody, was successfully immobilized on gold nanoparticles (GNPs) to improve their precise interactions with breast cancer cells (SK-BR3). The mean size of the GNPs (29 nm), as determined by dynamic light scattering, enlarged to 82 nm after herceptin immobilization. The in vitro cell culture experiment indicated that human skin cells (FB) proliferated well in the presence of herceptin-conjugated GNP (GNP-Her), while most of the breast cancer cells (SK-BR3) had died. To elucidate the mechanism of cell death, the interaction of breast cancer cells with GNP-Her was tracked by confocal laser scanning microscopy. Consequently, GNP-Her was found to be bound precisely to the membrane of the breast cancer cell, which became almost saturated after 6 hours incubation. This shows that the progression signal of SK-BR3 cells is retarded completely by the precise binding of antibody to the human epidermal growth factor receptor 2 receptor of the breast cancer cell membrane, causing cell death.

5.
Phys Chem Chem Phys ; 16(46): 25296-305, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25336297

RESUMO

A new type of pH-responsive hydrogel surface with varying nanoparticle adsorptivities was fabricated to form a micro-patterned film. To increase its responsivity to environmental pH changes, we incorporated graphene oxide (GO) into a poly(methacrylic acid)-polyethylene glycol copolymer. Incorporating GO in the pH-responsive hydrogel significantly increased the adsorption-desorption responsivity of Ag nanoparticles on the gel surface. A pH oscillator in a closed reaction system composed of BrO3(-)-Fe(CN)6(4-)-SO3(2-) facilitated the self-oscillating adsorption-desorption of Ag nanoparticles on the GO-incorporated gel surface. The reversible adsorption-desorption of Ag nanoparticles on the patterned hydrogel surface in response to pH oscillations was determined using UV-visible spectroscopy in aqueous solution. The observed heterogeneous oscillations indicated that the adsorptivity of the gel surface can be reversibly changed on the patterned pH-responsive gel. This phenomenon is similar to various natural biological systems.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas Metálicas/química , Adsorção , Grafite/química , Concentração de Íons de Hidrogênio , Óxidos/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Prata/química , Propriedades de Superfície
6.
J Phys Chem B ; 117(20): 6294-303, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23621666

RESUMO

Oscillatory adsorption-desorption of Ag nanoparticles on a pH-responsive hydrogel surface was induced by a pH oscillator in a closed reaction system. The hydrogel surface was prepared as a honeycomb-patterned film using a honeycomb-patterned polystyrene film as a template to speed up the response time in the stimuli-responsive hydrogel. The surface morphology and hydrophobic interaction of the patterned hydrogel surface were significantly altered by the pH change of the aqueous solution that came into contact with the gel. The surface of the hydrogel became hydrophobic for adsorption in a lower-pH solution but became hydrophilic with decreased adsorptivity at higher pH conditions. A closed system chemical pH oscillator composed of CaSO3-H2O2-NaHCO3-H2SO4 was applied to force the periodic adsorption-desorption of Ag nanoparticles on the gel surface. The experimental conditions for the chemical oscillator were optimized to obtain long-lasting high-amplitude pH oscillations in a closed reactor. The periodic adsorption-desorption was proved to be induced by the periodic pH change in the solution, although the two phenomena were not completely synchronized. That is, the periodic time was longer and the number of oscillations was less for the adsorption-desorption compared with the pH oscillations that occurred in the solution state. However, the heterogeneous oscillations obtained in this study clearly suggested that the hydrophobic interaction was reversibly changed in the patterned pH-responsive hydrogel surface, similar to various biological systems in nature.


Assuntos
Hidrogéis/química , Nanopartículas/química , Adsorção , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
7.
Bioinorg Chem Appl ; 2011: 650979, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22190895

RESUMO

This is a report on photo-irradiated extracellular synthesis of silver nanoparticles using the aqueous extract of edible oyster mushroom (Pleurotus florida) as a reducing agent. The appearance, size, and shape of the silver nanoparticles are understood by UV-visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The X-ray diffraction studies, energy dispersive X-ray analysis indicate that particles are crystalline in nature. Fourier transform infrared spectroscopy analysis revealed that the nanoparticles are covered with biomoieties on their surface. As can be seen from our studies, the biofunctionalized silver nanoparticles thus produced have shown admirable antimicrobial effects, and the synthetic procedure involved is eco-friendly and simple, and hence high range production of the same can be considered for using them in many pharmaceutical applications.

8.
J Phys Chem B ; 110(27): 13405-9, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16821862

RESUMO

The turbidity oscillations of self-oscillating polymers in the Belousov-Zhabotinsky (BZ) reaction system depending on the crown ether receptors contained in the polymer network have been studied. The three monomers are copolymerized, namely, N-isopropylacrylamide, the metal catalyst monomer for the BZ reaction, and the crown ether receptor monomer, to prepare the self-oscillating polymers used in this study. The turbidity oscillations are characterized by monitoring the transmittance of the polymer solution in the BZ reaction system at a specific wavelength of 570 nm. The oscillations are varied by crown ether receptors used in the polymerization process, i.e., BCAm(6) or BCAm(5), for the selective recognition of specific cations between potassium and sodium ions in the solution. The selective recognition of the BCAm receptors in the polymer chain for the two ions has brought out a variation in the turbidity oscillations by a change in the hydrophilicity of the polymer chain. The oscillations of the polymer solution composed of the BCAm(5) receptor are more influenced by sodium ion, while the polymer solution of BCAm(6) receptor is affected by potassium ion. However, the oscillation patterns of the redox changes obtained by these solution systems look much alike despite the differences in the polymer chain by crown ether receptors and cations of bromate used for the BZ reaction.


Assuntos
Éteres de Coroa/química , Oxirredução , Polímeros/química , Temperatura
9.
Chaos ; 12(1): 56-65, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12779533

RESUMO

Using reactors of different sizes and geometries the dynamics of the frontal polymerization of 1,6-hexanediol diacrylate (HDDA) and pentaerythritol tetraacrylate (PETAC), with ammonium persulfate as the initiator were studied. For this system, the frontal polymerization exhibits complex behavior that depends on the ratio of the monomers. For a particular range of monomers concentration, the polymerization front becomes nonplanar, and spin modes appear. By varying the reactor diameter, we experimentally confirmed the expected shift of the system to a greater number of "hot spots" for larger diameters. For square test tubes a "zig-zag" mode was observed for the first time in frontal polymerization. We confirmed the viscosity-dependence of the spin mode instabilities. We also observed novel modes in cylinder-inside-cylinder reactors. Lastly, using a conical reactor with a continuously varying diameter, we observed what may be evidence for bistability depending on the direction of propagation. We discuss these finding in terms of the standard linear stability analysis for propagating fronts. (c) 2002 American Institute of Physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...